Нахождение дисперсии ошибки определения коэффициента регрессии


Нахождение дисперсии ошибки определения коэффициента регрессии

3.9.3. Нахождение дисперсии ошибки определения коэффициента регрессии

При равном числе параллельных опытов (m0) во всех точках плана матрицы дисперсию ошибки определения коэффициента регрессии определяют по формуле

x020.gif                                                      (13)

где S2{bi} - дисперсия ошибки определения коэффициента;

S2{Y} - дисперсия показателя параметра оптимизации;

N - общее число различных точек в плане матрицы;

m - число параллельных наблюдений в каждой точке.

Вычисленное значение S2{bi} записывают в графу 43 формы 1 приложения 3. Значение S2{bi} для всех коэффициентов одинаковое.

3.9.4. Среднеквадратическое отклонение дисперсии ошибки определения коэффициента регрессии bi определяют по формуле

x021.gif                                                           (14)

Вычисленное значение S{bi} записывают в графу 44 формы 1 приложения 3.

Найденное значение S{bi} для всех коэффициентов одинаковое.

3.9.5. Значимость коэффициентов регрессии определяют по t - критерию Стьюдента. Для каждого коэффициента вычисляют значения ti - критерия по формуле

x022.gif                                                             (15)

где ti - критерий Стьюдента;

|bi| - рассчитанные коэффициенты регрессии;

S{bi} - среднеквадратическое отклонение дисперсий коэффициента регрессии.

Полученные значения ti записывают в графу 42 формы 1 приложения 3.

3.9.6. Затем проверяют гипотезу о значимости коэффициента bi. Для этого следует задать уровень значимости q = 5 % и определить число степеней свободы Vзн =N(m - 1), найти критическое значение tкр в табл. 3 приложения 5 для определенного числа степеней свободы. Если расчетное значение ti, определенное по формуле (15), окажется больше значения tкр, найденного в табл. 3 приложения 5, то гипотеза отвергается и коэффициент bi признается значимым. В противном случае bi, считается статистически незначимым, т.е. bi = 0.

Если какой-либо коэффициент окажется статистически незначимым, то он может быть отброшен без пересчета остальных коэффициентов.

3.9.7. Находят разность между расчетными значениями эксперимента ti, определенными по формуле (15), и tкр, найденным в табл. 3 приложения 5. Результат записывают в графу 46 формы 1 приложения 3.

3.9.8. Для контроля расчетов проверки значимости коэффициентов регрессии в форму 1 приложения 3 записывают следующие значения: q = 5 % - в графу 40, Vзн - в графу 41, tкр - в графу 42. В графу 47 записывают вывод: коэффициенты значимые или незначимые.

3.9.9. В графу 48 формы 1 приложения 3 следует записывать предполагаемую модель технологического процесса или операции со всеми коэффициентами (значимыми и незначимыми).

3.9.10. Статистическая незначимость коэффициента bi может быть обусловлена следующими причинами:

а) основной уровень режима фактора Xi осн близок к точке частного экстремума, т.е. bi @ 0

б) интервал варьирования фактора DХi выбран малым;

в) данная переменная (произведение переменных) не имеет статистической связи с показателем параметра оптимизации x023.gif;

г) велика ошибка эксперимента вследствие наличия неуправляемых и неконтролируемых факторов. Если имеют место причины, указанные в подпунктах а и b, то значение фактора следует стабилизировать на определенном уровне (не выходя за пределы варьирования), если имеет место причина, указанная в подпункте б, то следует увеличить интервал варьирования на величину, равную 0,05 ¸ 0,3 от интервала варьирования фактора, т.е. область варьирования должна составлять 10 - 60 % от размаха варьирования фактора. Если имеет место причина, указанная в подпункте г, то следует принять меры к уменьшению ошибки эксперимента.

3.9.11. В математическую модель технологического процесса включают только значимые коэффициенты.

Получают уравнение регрессии в виде x017.gif, где x018.gif - математическое ожидание показателя параметра оптимизации;

x024.gif- коэффициенты параметров модели;

Хi - факторы процесса.


Словарь-справочник терминов нормативно-технической документации. . 2015.

Смотреть что такое "Нахождение дисперсии ошибки определения коэффициента регрессии" в других словарях:

  • РДМУ 109-77: Методические указания. Методика выбора и оптимизации контролируемых параметров технологических процессов — Терминология РДМУ 109 77: Методические указания. Методика выбора и оптимизации контролируемых параметров технологических процессов: 73. Адекватность модели Соответствие модели с экспериментальными данными по выбранному параметру оптимизации с… …   Словарь-справочник терминов нормативно-технической документации

  • Коэффициент корреляции — (Correlation coefficient) Коэффициент корреляции это статистический показатель зависимости двух случайных величин Определение коэффициента корреляции, виды коэффициентов корреляции, свойства коэффициента корреляции, вычисление и применение… …   Энциклопедия инвестора

  • Корреляция — (Correlation) Корреляция это статистическая взаимосвязь двух или нескольких случайных величин Понятие корреляции, виды корреляции, коэффициент корреляции, корреляционный анализ, корреляция цен, корреляция валютных пар на Форекс Содержание… …   Энциклопедия инвестора

  • Прогноз — (Forecast) Определение прогноза, задачи и принципы прогнозирования Определение прогноза, задачи и принципы прогнозирования, методы прогнозирования Содержание Содержание Определение Основные понятия прогностики Задачи и принципы прогнозирования… …   Энциклопедия инвестора

  • Математи́ческие ме́тоды — в медицине совокупность методов количественного изучения и анализа состояния и (или) поведения объектов и систем, относящихся к медицине и здравоохранению. В биологии, медицине и здравоохранении в круг явлений, изучаемых с помощью М.м., входят… …   Медицинская энциклопедия